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ABSTRACT: A synthesis is presented of methods of orbital trans- 
fer by means of a small thrust, especially the "direct" equations 
expressing the coordinates of the mobile point as a function of 
time, and the "planetaryff equations which express the law of 
variation of the parameters of an osculating orbit. It can be seen 
that the latter equations are much more amenable to treatment, 
especially if one takes the time average of the terms in order to 
determine the ffsecularTf variations. However, by means of 
examples it is shown that th s dangerous, and 
that it is in any case prefer ect equations. 

I. CORRECTIONS IN THE PLANE 

the horizontal, 

a time t being the ballistic orbit the vehicle would follow if the thrust 
cease), we obtain the velocitv comDonents 
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The problem can be treated from two different viewpoints: In direct form, by 
writing down the differential equations of the motion; in "planetary" form, by regarding 
the trajectory as an envelope of osculating orbits and writing down the differential 
equations governing the variation of the orbital parameters. The second approach yields 
more readily integrable equations, in any case if one agrees (by assuming the parameter 
variations to be slow) to replace the fast varying terms, containing 0 or E, by their 
mean values during one revolution (which causes, however, certain difkulties of 
interpretation). 

By a simple reasoning we  can arrive at an immediate tentative conclusion. The 
vehicle energy per unit mass is 

This is true only if - 
hand the deri 

s the semi major axis of the osculating orbit. On the other 
ial component of the 

It would be premature, however, to conclude that in order to optimize an enlarge- 







4. The case of a constant purely tangential thrust 

This is the most correct case from an energy viewpoint. In this case system (5) 
assumes the form 

(7) 

It 
li , in terms of whic 

sin cc = - dr cos qr - --..ELL. d5 d5  ’ 
dv dv Since = v the first equation becomes trivial 

i. e., 

This is the energy equation. 

at the two ends of an arc ds, corresponding t 
of the tangent about a fixed referenc be 

rvature will be expressed as 

S , we can write 

. 

I .  
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Equation (8) yields . . -  

v* = 2Ts + a + C r 

If the acceleratio ted (at s = 0) to a ve 
constant will be equal t 

circular orbit of 

It was discussed by Benney [2], 

It is possible to obtain more amenable equations for a numerical calculation by 
proceeding from system (47 for the case that the acceleration is split into its radial 
and circumferential components: 

- /7 

where the dots above the symbols denote the derivatives with respect to the dimension- 
less variable t. If the acceleration is tangential, we simply have 

h is the absolute value of the (normalized) acceleration and 
tangent and the horizontal, i. e., 

the normalized veloc V/ ratio of the absol 
to the circular velocity on the original orbit), the above formulas go 0 

and, by substituting into (49, where the second equation is written as 



If the thrust is in the plane, all the osculating orbits have 
the same ascending node; hence the inclination i and the right 
remain constant. The four remaining o 
axis, eccentricity, perigee anomaly w 
the perigee transit time and n the mean angular velocity on the osc 
variable. 

. anomaly E, and in or  
know the integration co 

e can be regarded as 

eft  variation of the parameters 

da/dt and de/dt, since the two equations do not contain other parameter 
already noted, such a procedure involves numerous difficulties, since 
substituting functions of 8 or  E by their mean values has not been properly established 

ion of the orbital eters in terms of 
ations of Gauss. For deriving 

’ . in addition to classic the Technicd Memo EL 

. *  of this Memo. 
equations below refer to the 



osculating orbit even in the absence of a manoeuver acceleration and, on the other hand, 

/IO - rrn a system with 4 unknowns which can be 
, however, the purpose of the 

fer, the specification of Q(t) does 
important. 



The scope of this approximation can be illustrated by elementary considerations; if 
the two sides of the equations do not containunknows (which is not the case), the approxi- 
mation will certainly be correct. To give an elementary example: In the case of an equation * dt - - a + b cos t, the integral of this equation (at + b sin t) will consist of a secda? part 

and of a periodic part which is zero on the average; the secular part is precisely the 
integral of y = a, i. e., of the equation in which the averaging operation has been 
performed prior to the integration. The same applies to an equation of the form 
$& = f Q  [ a $. b cos t] which can be written as 
to an equation $ f Q  P (t) , where P is any periodic function of t.  

/11 
d F(y) = a $. b cos t with F(y) = 

d 

This is no longer true in the case of a system which could yield by eli 
(if possible) equations of order higher than the first. For example, the elementary 
system. 

yields 
.. 
y = y(a + b cos t) 

which is a Mathieu equation. Acc 
integral of the form y = 

; but the exponent 
the average is taken prior to the integration. 

are much simpler than the original equations; moreover, since the av 
leads to the vanishing of the unknown 8 (or E), the two equations for 
form a complete system (the other parameters do not occur in these 
then construct these secular equations and discuss the solution, which we know to be 
acceptable if the thrusts are very small. 

to Floquet's theory we know that this equation 

as it would be the case when 
P, hence of an average form 

is not necessarily to 

Taking this into consideration, it is evident in any case that the %eculaP equations 

The average must be taken with re 
o 8 o r  E over an interval 2 

e derivative of 

to time, Over a period of revolution, 
rovided that the function is multiplied 
with respect to 8 (0 

ated by the period of the osculating orbit, - /12 

s of n we have 
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this simplifies the calculation of the integrals, which simply vanish if the integrand is 
odd). 

For the use of (14) we recall the table of elementary relations: 

; s i n 0  Ji2? 

C O S  E - e ; cos 0 = 
1 - e cos E 

(I. - e cos E)(1 + e C O S Q )  = 1 - e 

1 - e C O S  E 

7. Thrust, decomposed into R and C 

The derivation of the secular equations on the basis of (10) and (11) is elementary; 
we shall see presently that the mean values of the coefficients of R, which are odd, are 
simply vanishing; this leads to the conclusion that the radial component has no effect 
on long-term transfer. 

On the other hand we know that this is not true; if R exceeds g0/8 (or - /I3 
in the case of an original circular orbit of radius a ), a transfer of orbit 
by a purely radial thrust. If R e g0/8, the secular law of variation of th 

rameters is periodic with a long period; hence it would be incorrect to conclude that 
and e are constant, 

This reasoning shows once again the 

the periodic variation 

the secular approximation, unless 

ed very small (of the order of 

~~ 

the accelerations are extremely small; for in the case R = const a direct 
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We could likewise obtain (if the formula were of interest to us) 

\ 

These equations naturally coincide with the equations used by Burt [3]. 

8. Thrust, decomposed into T and N 

The quantities R and C can be replaced by their expression (1) in terms of the 
tangential and normal components of the acceleration, thus yielding at once instead of 
(9) the formula 

where v is the instantaneous velocity expressed by 

’ . formula 

* ,  

-- - 
8 
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Formulas (16) and (17) are the equations utilized by King-Hele [PI; the difference in the 
sign of the norrnal component is simply due to the fact that King-Hele takes the positive 
normal towards the interior, 

The rate of displacement of the perigee (diu /at) has apparently a complicated - /I5 
expression; it can be simplified, however, by a small manual effort, yielding 

9. Secular equations 

A s  in the previous case, let us  write the secular equations by replacing the functions 
of 8 and E by their mean values. For substituting into (16) we must evaluate 

where E is a complete elliptic integral of the second kind, with modulus e. This yields 

which reduces in the case of very small e to 
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The mean value of the coefficient of N is zero; hence we 

If we evaluate the mean value of dw /dt (which is of little use), we shall encounter 
a surprise. The mean value of the coefficient of T is zero; hence we obtain 

If e is small 

- -  
I 
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which is not compatible with the conclusion found in the case of a radial thrust, i. e., 

If the eccentricity is very small, N and R tend to co 
a value tending to zero, while (22) yields a finite rate o 

constant acceleration N does not yi 

, but also a circumferential component C = -Ns 

; by introducing these expressions into (1 
tend to compensate themselves on the average, to 

2 e approximately. 

This is an almost absurd conclusion, since in the case of zero e the quantity N would 
yield only an R = N, which shows the subtlety of a lkecular average" operation. As a 
matter of fact, in the presence of an R or of an N, the eccentricity cannot remain zero, 
thus causing a discrepancy between the two accelerations; this explains, in a form not 
very accessible to intuition, the difference between the results. 

10. Integration of secular equations 

circumferential component appears to be useful. The equations are 
In the secular equations for the RC case the quantity R does not occur; only the 

(The llsecular average" sign has been dropped for reasons of simplicity). 

The system is very easy to solve; by taking the ratio of two sides, we obtain 

e 
a 
- 

i. e., (denoting the initial values by the subscript 

and by substituting into the first equation (23) 



These are the e 1. Equation (26) can be solved by a 
e original orbit is circular, the quadrature, yielding t as a functi 

integral will be eleme 

If eois not zero, equati 
convenient, i. e, ,  by t 
the form of an elliptic 
to dwell on this form 
uncertainty of the approximation; since eo is small, it is always possible to expand 

kind with modulus 75O. It is no 
proportion with the 

and to integrate the series. 

is known as a function of time, the eccentricity will be expressed by 
(25), which shows that the eccentricity decreases constantly when the orbit is enlarged. 
- The eccentricity will always re 
<little conviction, 

in zero if eo were zero, which is a result that carries 

The case of a purely tangential thrust can also be treated in secular form; the 
secular equations are 

By taking the ratio of two sides of the equation, we immediately obtain - 

(27) 

Despite its prohibitive look, this equation can be integrated ?'at sight??, eE/(l-e2) 
being in fact nothing else but the derivative of K-E with respect to e. - 119 

Hence 

' ' when the orbit is enlarg 
city will always remain z 
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(29) 
- = - -  de ' {G .T .d t  dt n e 

i 

In principle, equation (29) solves the problem; by wri t  

it could yield the time by a direct quadrature, as a function of e. 

The quardrature for the left-hand side of (30) can be performed (numerically, of 
course) once and for all, since this term does not contain other parameters. After the 
equation has been solved with respect to e, hence with respect to K-E, we can obtain 
directly from (28). 

These equations are basically the same as those obtained by King-Helle [4], who 
does not use, however, the symbols of elliptic integrals, but replaces them by 
corresponding series, generally truncated at the second-order term. In particular, 

he solves "once and for all" an approximated equation (26), obtaining 
e 
e 

as a function of 

[4, Fig. 21; he'concludes that the shape of the curve does not appreciably change - 
0 

when e varies. (But the solution will be erroneous if eo = O!). 
0 

It can be noted (King-Hele) that by writing the equation which expresses de/da (the 
variation of the eccentricity as a function of the 
acceleration of manoeuver is eliminated; the 1 
is changed from one revolution to another (we are dealing with equations that arejvalid 

11. Some conclusions 

r axis) in the form (24) or  (27), the 
) remains the same when the thrust 

/20 
on the average) or perhaps switched off at intervals. 

__ 

. .  

We are drawn to the conclusion that the trplanetarytr formulation, which studies the 
behavior of the parameters in time, is amenableto a fairly elegant mathematical 
treatment (if we proceed from the secular equations), though it is a bit dangerous to 
accept the results without any reservations. 

On the other hand we deem it useful (in any case) to check the results of the 
"planetary" formulation by a simultaneous integration of the f'directf' equations with the 
same parameters; this can be done independently of the solution of the actual problem, 

ameters, in order to be 
ample, that the planeta 

secular variat a result of a purely radial ac 
true at all and should be further examined). . . 

. .  
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II. CORRECTIONS OUTSIDE THE PLANE 

12. Direct formulation 

with x and y in the original osculating plane, the x-coordinate passing throu 
nee the initial values of the original coordinates will be x = r, y 

Thus we  obtain at once 

and the Cartesian equations 

go over into 

* .  

)”* 

components are constant; it is not even possible to reduce the system to a single equa- 
tion containing r, as we did in the case B = 0. 



ed for the de 
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or s to (24) in 131. 

For a circular orbit, all these orbital-plane changes are zero on the average; in 
order to avert this, Burt proposes a reversal of the direction of the acceleration B at 

ints at which $- changes sign, i. e., according to (32) at the points where cos 
vanishes. By similar considerations, Burt suggests sign reversals of certain 

variables in the case that the (instantaneous, not secular) derivative of the variable of 
interest vanishes. This evidently makes it possible to prevent the secular derivative 
from decreasing to zero or  to an excessively small value as a result of a sign reversal 
of the instantaneous derivative. This is evidently an efficient procedure, though of 
doubtful practicability. Naturally, by reversing the sign of a thrust in order to speed up 
the variation of one of the planetary coordinates, we may cause a reduction (or the 
vanishing) of the mean variation of another coordinate; this may be unimportant if only 
the first coordinate is of interest, 
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ORB 
BY A CO 

1. Statement of problem 

It is required, by proceeding from a circular orbit of geocentric radius ro, to 
enlarge the orbit until (possibly) escape, by using small thrusts that are constant 
(during a limited time, of course). In a spherical potential field and in free space the 
analytic problem is very simple. The following simplifying assumptions are adopted, 
schematically represented in the form of 3 cases: 

a) The thrust is purely radial (llvertical'l) and constant. 
b) The thrust is purely flcirc (horizontalf1) and constant. 
c) The thrust is tangential and tory is constant. 

Here we shall consider the case of a vertical thrust. Denoting by 0 the geocentric 
azimuth with respect to the original vertical, the initial conditions will be 

where go is the gravitational force at the altitude of the circular orbit. 

circumferential acceleration (in the direction of increasing e), we obtain the equations of 
motion 

Denoting by R the radial acceleration (positive in the upward direction) and by C the 

with the initial conditions. 

2. General equation of radial (vertical) thrust 

With C = 0, the second equation (2) reduces to 

3 From the second condition (1) we obtain for the constant the valued gore. . . 

Hence the equation for r assumes the form 

(3) 
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i. e., 

This equation c 

The con 

By setting r = ro p , this equation goes over into 

hence 

otes the ratio R/go. 

Hence the radial velocity vanishes first of all at = 1 9  which represents an 
condition, and at the two roots of 

3. Thrusts smaller than g0/8 

If the thrust is smaller than this value m, the radial velocity vanish33 at the 
first root of (5), i. e. , at 

This has the v 
at the limiting 
reached is spec 

radius can be more than doubled 
e maximum distance that can be - /26 any other val 



t .  

with 

When xcx,, the integral will be 

- 

or, quite simply, by k = x1 (since x1x2 = 1). 

.e transfer to the new orbit is 

T 2( '+ztJ  K (x , )  - 2 Ft E b,)\ 6 (8) 

;e complete elliptic integrals; the time becomes infinite (logarithmic) /27 7 



(except in the case 

y follows equation (3) as well, and hence 
be taken with negative sign. Thus the f 

k'the time T specified by (8), i.e 
at the original orbit; then the bo 



, .  

Thus we  would realize a transfer of circular orbit (limited, of course, to a radius 
smaller than double the initial radius; yet the new orbit could perhaps be used as a new 
parking orbit, even if the procedure is complicated). 

It is of interest to evaluate the characteristic velocity corresponding to transfer 
from P = 1 to p = p by means of a radial thrust )A go during a time T plus the increment 
AV specified by (9). Denoting by c the ejection velocity, the thrust R will  be specified by 

1 

M R  = - c dW//dt 

where M is the instantaneous mass. Since R is assumed constant, we have during a 
time T the formula 

c -& (M,/M,) = R T  

this is precisely the characteristic velocity with respect to the radial thrust. The 





e 

if we intend to use ordinary tables, 

1, the normalized escape r 
a1 form. Sinc 

be smaller than 2 and formula 

we find 

The two roots 

(12) will still hold, nce 

the enlargemetl 

Formula 
sign of E, which is erroneously given as Wr in [l], 



5. Conclusions 

If the thrust were switched off at the apogee, the vehicle would follow an elliptic 
4 2 uz - = - - -  ’ = - e -  

orbit with a semi major axis specified by r, 9.r: ra r,Z - 

; when p,l > 1, hence4 = )“o 

the perigee would fall below the original orbit. The constancy of the thrust permits the - /32 
vehicle to be maintained between the apogee and the original orbit, the trajectory being, 

f 0 ; the perigee would be at 2a - f o  P, = 8,‘ 

? P ,  - I  2 P ,  - - -_ 

of course, not elliptic, but rather helical. 

in a much more efficient way than by means of a radial thrust, The t 
needed in this difference between the circular 
and the actual 

ement AV, needed to make the orbit 
circular at 2ro, would be equ half the original orbital velocity. 

- &  distance; in particular, at a 



the vehicle attains its escape velocity. The time needed to attain the escape velocity is 
specified by formula (12), which can be rewritten as 

_I 

t Y  = rb E i-m4A + F ( d  - E (d] 
?n 2p.4  

n 

e elliptic integrals being defined 

, taking values between 0 by arc( 

** u s  2r in a time 
0 

i. e, , during To/3 approximately. The time is smaller if the thrust exceeds one-half 
the gravitation go. 
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